A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in the unicellular red alga Cyanidioschyzon merolae.
نویسندگان
چکیده
Plant NiR (nitrite reductase) and SiR (sulfite reductase) have common structural and functional features. Both enzymes are generally distinguished in terms of substrate specificity for nitrite and sulfite. The genome of Cyanidioschyzon merolae, a unicellular red alga living in acidic hot springs, encodes two SiR homologues, namely CmSiRA and CmSiRB (C. merolae sulfite reductases A and B), but no NiR homologue. The fact that most known SiRs have a low nitrite-reducing activity and that the CmSiRB gene is mapped between the genes for nitrate transporter and nitrate reductase implies that CmSiRB could have a potential to function as a nitrite-reducing enzyme. To verify this hypothesis, we produced a recombinant form of CmSiRB and characterized its enzymatic properties. The enzyme was found to have a significant nitrite-reducing activity, whereas its sulfite-reducing activity was extremely low. As the affinity of CmSiRB for sulfite was higher by 25-fold than that for nitrite, nitrite reduction by CmSiRB was competitively inhibited by sulfite. These results demonstrate that CmSiRB is a unique SiR having a decreased sulfite-reducing activity and an enhanced nitrite-reducing activity. The cellular level of CmSiRB was significantly increased when C. merolae was grown in a nitrate medium. The nitrate-grown C. merolae cells showed a high nitrite uptake from the growth medium, and this consumption was inhibited by sulfite. These combined results indicate that CmSiRB has a significant nitrite-reducing activity and plays a physiological role in nitrate assimilation.
منابع مشابه
A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae
The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been esta...
متن کاملPhotorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions
Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mecha...
متن کاملCytoplasmic localization of the single glutamine synthetase in a unicellular red alga, Cyanidioschyzon merolae 10D.
Glutamine synthetase (GS) is a key enzyme for nitrogen assimilation. Although GS contains multiple molecular species found in plastid, mitochondria and cytoplasm in green plants and algae, genome analysis of a red alga, Cyanidioschyzon merolae, revealed a single nuclear gene for GS (CmGS). In this study, we experimentally determined the CmGS localization in the cytoplasmic compartment.
متن کاملMitochondrial localization of ferrochelatase in a red alga Cyanidioschyzon merolae.
Ferrochelatase (FECH) is an essential enzyme for the final step of heme biosynthesis. In green plants, its activity has been reported in both plastids and mitochondria. However, the precise subcellular localization of FECH remains uncertain. In this study, we analyzed the localization of FECH in the unicellular red alga, Cyanidioschyzon merolae. Immunoblot and enzyme activity analyses of subcel...
متن کاملImprovement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D.
Although the nuclear genome sequence of Cyanidioschyzon merolae 10D, a unicellular red alga, was recently determined, DNA transformation technology that is important as a model plant system has never been available thus far. In this study, improved culture conditions resulted in a faster growth rate of C. merolae in liquid medium (doubling time = 9.2 h), and colony formation on gellan gum plate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 423 1 شماره
صفحات -
تاریخ انتشار 2009